20 research outputs found

    Electromagnetic modelling of planar circuits in bounded layered media

    Get PDF
    Printed circuits in bounded media encompass a wide range of practical structures such as discontinuities in waveguides, planar circuits embedded in shielded multilayered media or even two-dimensional printed periodic structures. The Electromagnetic (EM) modeling of printed circuits in layered bounded media is performed via an Integral Equation (IE) technique. Green's functions (GFs) are specially defined to satisfy both the Boundary Conditions (BCs) imposed by the layered media and by the transverse boundary enclosing the entire structure. Finally, a system of IEs on the equivalent sources can be solved numerically by means of the Method of Moments (MoM). Each of the problems enumerated above has already been solved by other authors using IE-MoM techniques. Nevertheless, our formulation introduces a unified approach applicable to all the aforementioned problems. Due to the symmetry presented by a bounded layered media, the GF problem can be reduced into a two-dimensional transverse boundary problem and a one-dimensional transmission line problem in the normal direction. Both problems can be treated independently. This thesis proposes and fully develops an efficient technique that encompasses different laterally bounded multilayered problems with a seamless transition between them. The method is based on a modal representation of the transverse boundary problem and on the expansion of the equivalent surface currents by zero-curl & constant-charge Basis Functions (BFs). It offers a unified and versatile approach that, on one hand eliminates redundancy in the formulation and on the other hand simplifies each particular problem to the evaluation of constant coefficients or basic line integrals. Analytical solutions can be found for the combination of linear subsectional basis functions in rectangular and circular Perfect Electric Conductor (PEC) boundaries as well as for periodic lattices. This thesis then solves the problem of transmission line model in the longitudinal direction by proposing an efficient algorithm that guarantees numerical stability under a variety of known critical conditions where other already known formulations fail. In addition, it introduces alternate equivalent expressions of this formulation that allow new interpretations of the problem. Due to its practical interest, the method is applied for the EM modeling of multilayered boxed printed circuits. This motivated the implementation of a dedicated software tool for the efficient analysis of these topologies including losses. Extensive numerical experiments have been carried out to assess the validity of the aforementioned theory and some properties of test-structures (losses, mesh, etc)

    Integral Equation Modeling of Waveguide-Fed Planar Antennas

    Get PDF
    This paper presents a method for the analysis of planar multilayered waveguide-fed antennas. The method combines mixed-potential integral equations (for laterally open regions) and modal field integral equations (for laterally closed regions) with a seamless transition between the two domains. The method has been implemented in a numerical tool and the simulation results of two waveguide-fed microstrip structures have been presented. The results are in good agreement with both measurements and simulations obtained with other commercial electromagnetic tools. Comparisons in terms of memory occupation and simulation time have also been performed

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Exposure system to study hypotheses of ELF and RF electromagnetic field interactions of mobile phones with the central nervous system

    Full text link
    A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD)
    corecore